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Abstract

It was the main task of this thesis to analyze, design and implement a parallel
version of a classical sequential algorithms. We have in this thesis selected
to parallelize the classical sequential algorithm Push Relabel, using the general
parallelization procedure described in [11]. Several different implementations,
with or without heuristics, has been considered and tested against each other
to get the most efficient algorithm for solving the maximum flow problem.

The Push Relabel algorithm has been discussed and parallelized in previous
studies (e.g. [2] and [3]), but they utilize the programming language C to
implement the actual algorithms. Our thesis differs from previous studies by
implementing the algorithms using the widely used object-oriented programming
language Java. The main focus of the thesis is therefore not only to develop
a parallel implementation of the Push Relabel algorithm but also to study the
affect of using the parallelization tools available in Java. Our implementation
also differs from earlier studies by being optimized and tested on public available
multi-core computers instead of high-end supercomputers.

All developed algorithms has been tested against reference implementations of
other well known sequential algorithms, and for testing-purposes, three graph
generators has been developed and implemented. The graph generators are
inspired by graphs used in previous studies [10] and graphs used in the DIMACS
implementation challenges [7].

The developed algorithms performs well in practice, and results in running time
decreases proportional to the number of CPU cores. We have, however, dis-
covered that the performance of the algorithms varies a lot depending on the
operating system and Java version.
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Resumé

Hovedvægten i denne opgave er blevet lagt p̊a, at analysere, designe om imple-
mentere en parallel version af en klassisk sekventiel algoritme. Vi har i opgaven
valgt at parallisere Maxiumum Flow algoritmen Push Relabel, ved at bruge den
generelle paralleliserings-metode beskrevet i [11]. Forskellige implementationer,
med og uden heuristik, er blevet overvejet og testet op imod hinanden for at
finde den mest effektive algoritme for at løse Maximum Flow problemet.

Push Relabel algoritmen er blevet beskrevet og paralleliseret i tidligere un-
dersøgelser (f.eks. [2] and [3]), men disse undersøgelser bruger programmer-
ingssproget C til at implementere algoritmerne. Vores opgave afviger fra tidligere
undersøgelser ved at implementere algoritmerne ved brug af det objekt orien-
terede sprog Java. Hovedvægten i opgaven er derfor ikke blot at udvikle en par-
allel implementation af Push Relabel-algoritmen men ogs̊a at undersøge hvilken
effekt det giver at bruge de indbyggede paralleliseringsværktøjer i Java. Vores
opgave afviger yderligere fra tidligere undersøgelser ved at henvende sig til pri-
vate flerkernede computere i stedet for avancerede supercomputerede.

Alle de udviklede algoritmer er blevet testet op imod en reference-implementation
af andre kendte sekventielle algoritmer og tre graf-generatorer er blevet imple-
menteret for at generere testgrafer. Disse graf-generatorer er inspireret af grafer
som er blevet brugt i tidligere undersøgelser [10] og grafer som er blevet brugt
i DIMACS [7].

De udviklede algoritmer klarer sig godt i praksis og køretiderne viser sig at
aftage proportionelt med antallet af CPU-kerne. Derudover har vi opdaget at
algoritmernes ydeevne afhænger meget af det operativsystem som bruges og af
den Java-version som bruges.
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Chapter 1

Introduction

1.1 Motivation and purpose

Until a few years ago, designing parallel algorithms was the task of only a
small part of developers, in particular researchers. This was mainly because
multi-core computers were not available to the general public, but also because
efficient parallel programming tools were not implemented in the widely used
object-oriented programming languages. This, however, has changed during the
last few years as multi-core processors has become more mainstream. Software
and algorithms now needs to be parallelized to take advantage of multiple CPU
cores, as this have become the means to improve performance while the actual
processor clock frequency is no longer increasing.

The main purpose of this thesis is to parallelize the classical sequential algorithm
Push Relabel, which is an efficient algorithm for finding the maximum flow in
a flow network. Other classical algorithms could have been chosen, but our
initial research combined with previous studies [2], showed that the Push Relabel
algorithm has a good parallelization potential.

An important part of the thesis is the actual parallelization process and much
work has been put into describing this in details. The process begins with a
analysis followed by a design phase and the actual implementation. The process



www.manaraa.com

2 Introduction

used, is inspired by the process used in [11] and is similar to the procedures used
in other known literature.

The analysis phase is very thorough and contains several steps that divides the
algorithm into smaller tasks and maps these to the different CPU cores and
thereby enables concurrent execution of tasks. The analysis also discusses and
plans the synchronization between the smaller tasks as well as the access control
to shared data structures.

Following the analysis, the developed algorithms are implemented using the
object-oriented programming language Java, and their performance is compared
to reference implementations of other maximum flow algorithms. One important
aspect in which our thesis differs from previous studies is by the use of an object-
oriented language instead of the commonly used language C, and it is interesting
to see what impact this will have on the performance as well as the development
process.

The thesis does not require any previous knowledge on neither the maximum
flow problem, the push relabel algorithm and/or the parallelization process as
all relevant theory is introduces during the thesis.

1.2 Structure and overview

In Chapter 2, we introduce the main concepts of concurrency and parallelization.
This includes an introduction to basic concurrency theory which introduces the
concepts of memory models, properties of concurrent programs and how concur-
rent programs can be modelled. This is followed by a thorough explanation of
the parallelization procedure used in the thesis.

The chapter proceed by introducing the classical synchronization primitives and
explains how they are available in Java.

In Chapter 3, we introduce all relevant theory and definitions of the maximum
flow problem. This is followed by an introduction to the different maximum
flow algorithms used in the thesis.

Chapter 4 describes in details the development of the parallelized version of
the Push Relabel algorithm. The chapter contains an analysis following the
procedure described in Chapter 2, which leads to a more detailed design of
the algorithms. Finally, the chapter contains implementation specific details on
each of the implemented algorithms, as well as implementation details on the
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underlying graph framework.

To verify and test the developed algorithms, Chapter 5 contains the results from
the actual execution of the developed algorithms. The results are compared to
reference implementations of other sequential algorithms, and the performance
benefits gained from parallelizing the Push Relabel algorithm is discussed.

Finally, our achievements, conclusion and suggestions for future work is pre-
sented i Chapter 6.
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Chapter 2

Concurrency and
parallelization

In this chapter the theory needed to parallelize a sequential algorithms is pre-
sented. The chapter contains an introduction to basic concurrency theory as
well as a description of the parallelization procedure used in the thesis. This is
followed by an introduction to the classical synchronization primitives and how
these are available trough Java.

2.1 Concurrency Theory

A possible definition of concurrency in computer science is a property of a system
in which several computational processes or tasks are executing at the same
time, possibly interacting with each other. These tasks may be implemented as
separate programs or threads within a single program.

In this thesis the term task is used instead of the more classical term process
to denote the computational process which takes place. This is done to clearly
distinguish it from the term processor which denotes a CPU core.

On modern computers all tasks may execute in parallel (true parallelism), how-
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ever it is most often the case that the number of of processors is less than
the number of tasks. As a result of this, parallelism is often obtained by the
method of time-slicing, where the operating system controls the scheduling of
tasks between the available processors. A consequence of this is that the actual
execution time of a single task is unknown [16, cha 2.3.2].

As stated, tasks in a concurrent system can interact with each other while they
are executing. This, combined with the time-slicing method, results in an highly
unpredictable order of execution between the different tasks, and it is often up
to the developer to use different techniques to control this execution order. The
interaction between tasks is described more formally later in this section.

In general when two or more tasks are interacting with each other, they are
said to be ”communicating”. Communication is however a very vague term and
in concurrency theory two different communication strategies has been defined
more formally:

� Shared memory In a shared memory system, the different processors
and memory modules are interconnected, and tasks can therefore share
the same memory locations. The communication between tasks is car-
ried out by altering some shared variable which then is visible to other
tasks. Because different tasks, or threads as they are most often called in
this context, are sharing the same memory locations, consistency issues
can occur. These issues can be handled by utilizing some kind of locking
mechanism (synchronization primitives), which controls the access to the
memory locations and preserved the program invariants. The main prob-
lem with the locking solution is, that it is up to the programmer to ensure
that the consistency issues are taken care of, which leaves room for errors.
We use the synchronization and locking primitives of the JAVA language
to the control the consistency issues and they will be introduces in Section
2.4.

� Distributed memory In a distributed memory system all processors are
still interconnected, but each processor now has its own memory module.
This can be achieved within a single computer (a multi-computer), but
the distributed memory model is also suited for connections across a net-
work (network system). The communication between the processors is in
a distributed system handled by message parsing. The concept of mes-
sage parsing means that tasks communicate by exchanging messages. The
exchange of messages may be done both synchronously (blocking) or asyn-
chronously (non-blocking). There exists a number of models for modeling
the behavior of systems using message parsing, one of them ,rendezvous,
may be used to model blocking implementations, in which the sender
blocks until the message is received. Message parsing systems are often
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easier to reason about than shared memory systems, and they are often
very scalable in size. The downside of distributes memory systems is, that
they have a larger communications overhead than shared memory systems
and thereby doesn’t utilize the processing power as optimal.

An example of a very large distributed memory network system is the
SETI@HOME project in which almost 3 million home computers work
together to detect intelligent life outside of Earth. [19].

2.1.1 Properties of concurrent programs

”Concurrent programs differs from sequential ones by being reactive, i.e. ex-
pressing an (often infinite) activity rather than the computation of a final re-
sult.”[16, cha 3.1]. Because of this the focus is on behavior, rather than on
input/output relations. Properties of a concurrent program can be divided into
two informal categories:

� Safety properties A safety property is a property stating that ”some-
thing bad does never happen”. A typical example of a safety property is
that a program is Deadlock free. A deadlock is a situation wherein two
or more competing tasks are waiting for the other to finish, and thus nei-
ther ever does. The safety properties is therefore usable in securing and
actually proving that a program always does what it is supposed to do.

� Liveness properties A liveness property is a property stating that a
program ”eventually will make progress”. An important liveness property
is that a program should always terminate at some point.

By parring safety and liveness properties it can be implied that a program
”eventually does something good”. More information on safety and liveness
properties can be found in [16].

2.1.2 Modeling concurrent programs

To model and prove properties of concurrent programs different models have
been developed. In this section two useful models for modeling concurrent
behavior is introduced, namely Petri Nets and the interleaving model. These
models also serves as useful models for introducing several of the most important
terms of concurrent programs. Of course several other models exists, but they
are out of the scope of this thesis.



www.manaraa.com

8 Concurrency and parallelization

Petri Nets Formally a Petri Net is a bipartite, directed graph that can be
used to describe the dynamic behavior of a system, especially the concurrency
and synchronization aspects [16]. A Petri Net graph consists of two kinds of
nodes/vertices. Places which represents states of a system and transitions which
represents activities in the system. Places are drawn as circles and transitions
are drawn as bars or boxes. Places and transitions are connected via arcs that
indicate the dependencies between states and activities. Furthermore, places in
a Petri Net may contain zero or more tokens, and a distribution of tokens across
a Petri Net is called a marking.

As stated, A Petri Net can describe how a system behaves dynamically over
time. This is done by showing how the different states and activities of a system
influences each other. The change of state is modelled by letting an initial mark-
ing evolve trough ”firing” of transitions, meaning that a transition consumes a
specified number of tokens from its input places (one token per incoming arc),
performs some processing task, and produces a specified number of tokens into
each of the output places (one token per outgoing arc). A transition is set to be
enabled, if each of its input places contains at least one token, and a firing of a
transition, which is performed in a single, non-preemptible step, can only take
place if the transition is enabled. Enabled transitions can fire at any time, and
happens in a non-deterministic manner, meaning that multiple transitions may
fire simultaneously exactly like the execution of concurrent threads.

The mathematical representation of a Petri Net is a tuple < P, T, F > where

P: Is a set of vertices called places

T: Is a set of vertices (P ∩ T = ∅) called transistions

F: Is a flow relation consisting of a set of arcs, where F ⊆ (P × T ) ∪ (T × P )

The state of a Petri Net is represented by the the current marking of the net
represented as a vector M , where the initial state is given by the marking M0. If
an enabled transition is fired, the marking M evolves into M ′, which is denoted
by M1

t→ M2. Figure 2.1 shows an example of a Petri Net where the current
state is given by the vector M t = (1, 0, 1, 0).

As already mentioned, a transition t can only fire if there exists enough tokens
in the input places. This can be seen as a condition of an action and can be
used to model many synchronization mechanisms. A mechanism used a lot
throughout this thesis is the concept of Mutual Exclusion. Mutual exclusion is
when certain actions (or sequences of actions) are not allowed to be executed
at the same time. Usually this is to prevent the two or more threads access the
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Figure 2.1: Example of a petri net

same resource or data-structure at a time. Mutual exclusion is easily modelled
using Petri Nets by using an auxiliary place with a single token that represents
the ”right” to execute. By letting the transitions, which should not be executed
at the same time, claim this single token, the firing rules prevents that more
than one of the transitions to be fired at the same time. The auxiliary place
with a single token is in most programming languages known as a lock. The
lock is acquired before critical code is executed and released when done. A Petri
Net with mutual exclusion can be seen in Figure 2.2.

The Interleaving Model If one is not interested in the properties related to
whether actions are actually performed in parallel, but solely in the properties
related to the sequence of states a task will go trough, one may use the inter-
leaving model of the task behavior. For any given task the execution flow can
be modelled by a finite or infinite sequence of the form:

s0
a0→ s1

a1→ s2
a2→ ...

where s0 is the initial state of the task and the ai’s are actions/transitions. The
execution of action a0 will change the state of the task from s0 to s1, etc. If
the actions of a program always executes without any overlapping in time, the
task is said to be sequential. In the interleaving model, a concurrent program is
composed of two or more sequential tasks overlapping in time. Because of the
overlap in time we need to introduce the concept of atomic actions. An atomic
action is an indivisible action, meaning that no other tasks are able to detect
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Figure 2.2: Example of a Petri-net representing mutual exclusion

any intermediary states during the execution of the action.

With the introduction of the atomic action, the question is which executions
are possible for a program. The execution speed of each action and thereby also
each task is unknown, meaning that the execution of a program is given by all
possible interleaving of all possible sequences of actions of the tasks. The total
number of interleavings of a program can be computed as seen in equation 2.1.

(i1 · i2 · i3 · . . . · in)!
i1! · i2! · i3! · . . . · in!

(2.1)

where in denotes the number of atomic actions in the n’th task. As this number
rapidly increases, it is hard to predict all possible outcomes of a program. This
is exactly why it is important to control access to certain areas of code and
thereby limiting the amount of possible interleavings.
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2.2 Parallelization

The main topic of this thesis is the design of algorithms for modern-day multi-
core systems. As multi-core processors becomes more mainstream, software and
algorithms needs to be parallelized to take advantage of multiple cores. Until
a few years ago most algorithm designers were designing sequential algorithms
which is more or less a series of steps for solving a given problem using a serial
computer (with a single CPU core). Likewise, a parallel algorithm could be de-
scribed as the steps involved in solving a given problem on a parallel computer.
This however, is an oversimplification, as the development of parallel algorithms
involves much more than just describing the steps of the computation. At the
very least, a parallel algorithm has the added dimension of concurrency and the
algorithm designer must specify the sets of steps that can be executed simulta-
neously. Simultaneously or concurrent execution is essential for obtaining any
performance benefits from the use of a multi-core computer. In practice, design-
ing a nontrivial concurrent algorithm may include some or all of the following
steps [11, chapter 3]:

� Decomposition: Identifying parts of problem that can be performed
concurrently.

� Mapping: Mapping the sub-problems to the available threads.

� Access control (synchronization): Controlling the access to data shared
by multiple threads using synchronization.

The above items is the parallelization technique used in this thesis, but is just
one out of many possible ways of parallelize an algorithm. A parallelization
technique should not be seen as an exact science and varies depending on the
actual problem. Usually the steps also varies depending on both the underly-
ing architecture and the programming paradigm (programming language). It
is also important to note that not all sequential algorithms are suited for par-
allelization, often because each subproblem relies on results from the previous
subproblem. This creates a large communication overhead and the benefits of
parallel computing is lost.

A sequential algorithm’s potential benefit by being converted into a parallel
algorithm is theoretically defined by Amdahl’s Law[1]. The law predicts that
if P is the portion of a program that can be made parallel (i.e. benefit from
parallelization), and (1−P ) is the portion that cannot be parallelized (remains
sequential), then the maximum speedup that can be achieved by using N pro-
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cessors is given by equation 2.2.

1
(1− P ) + P

N

(2.2)

In the following subsections, the parallelization steps are discussed in further
details, followed by a discussion of the challenges met when designing concurrent
algorithms. Together with each step is a small example showing the steps in
practice.

2.2.1 Decomposition

As mentioned, one of the most important steps needed to solve a problem in
parallel is to decompose or split a problem into a set of subtasks which can be
executed concurrently. Tasks can be of arbitrary size defined by the programmer,
and not all tasks need to be of the same size.

In an ideal case, all tasks should be independent from each other, but most often
it is the case that each task depends on the result of other tasks. It is therefore
important to resolve how each task is dependent on other tasks. This could
be done by using a task-dependency graph, which is a directed acyclic graph
where vertices represents tasks and the directed edges represents dependencies
between tasks. The task corresponding to a node can be executed when all
tasks connected to this node by incoming edges have completed. An arbitrary
example of task-dependency graph can be seen in figure 2.3. The figure, among
other things, shows that task 7 can only be executed when all other tasks have
been completed.

Another important problem to have in mind when decomposing a problem is
the granularity of the decomposition. The granularity refers to the size of the
subtasks compared to the main problem. If the decomposition consists of a large
number of small tasks it is called fine-grained, and if the decomposition consists
of fewer larger tasks it is called coarse-grained. The granularity can have a big
impact on the performance of an algorithm in two ways. If the decomposition
is too fine-grained, each task is not very computation heavy and much time
is used on communication between the different tasks. If the decomposition
on the other hand is too coarse-grained, not enough operations can be done
concurrently and some processors may be idle for some time. The key is to
find the correct task-size so that each processor is always occupied and only
minimal time is spend on communication. This optimal task-size can be hard
to figure out and is most often achieved trough trial-and-error. An example of
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Figure 2.3: Task-dependency graph

decomposition can be seen in figure 2.4, which is about the multiplication of a
dense n×n matrix A with a vector b to yield another vector y. The i’th element
y[i] of the product vector is the dot-product of the i’th row of A with the input
vector b. The figure illustrates a decomposition into 4 tasks, each responsible of
a quarter of the complete computation. This decomposition limits the number
of concurrent tasks to 4 as this is the maximum number of independent tasks.

Figure 2.4: Decomposition of a matrix multiplication

There exists a number of different approaches to decompose computational prob-
lems and this thesis will only introduce two of them - recursive decomposition
and data decomposition. The decompositions mentioned should however be a
good starting point for many computational problems and they can often lead
effective decompositions.

Data decomposition In the data decomposition approach, the data associ-
ated with the problem is decomposed instead of the problem itself. If possible
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the data is divided into smaller pieces of approximately equal size. Next the
computation is decomposed, which is typically done by associating each opera-
tion with the data on which it operates. This partitioning yields a number of
tasks, each comprised of some data and a set of operations on that data. In an
ideal case, each task is completely independent from other tasks, but often oper-
ations may require data from several other tasks. In these cases communication
between tasks is required.

The data decomposed may be either the input to the program, the output of
the program or some intermediate data maintained by the program. Several
different partitions are often possible based on the data structure, and careful
analysis is required to determine the most effective. An effective approach is
to focus first on the largest data structure or on the data structure which is
accessed most frequently, but it is important to note that a computation could
contain more than one phase which requires different decompositions.

The example shown in figure 2.4 utilizes data decomposition in which the input
data (The matrix A and the vector b) is decomposed into smaller parts.

Recursive decomposition Recursive decomposition represents a different
and complementary way of thinking about problems. In this approach, the
initial focus is on the computation that is to be performed rather than on the
data manipulated by the computation. This method is useful if the computation
can be divided into disjoint tasks which often is the case for algorithm usually
solved using the divide-and-conquer strategy. In this technique, a problem is
solved by first dividing it into a set of independent subproblems. Each one
of these subproblems is solved by recursively applying a similar division into
smaller subproblems followed by a combination of their results. The divide-and-
conquer strategy results in natural concurrency, as the different subproblems can
be solved concurrently. If the subproblems are not completely disjoint (as they
are in divide-and-conquer algorithms), the recursive decomposition technique
can still be used. However, this requires some communication between the
different tasks, which in many cases isn’t trivial. If the communication overhead
is too large the data decomposition method should be considered instead.

2.2.2 Mapping

When the problem has been decomposed into smaller tasks, each of these tasks
should be run on physical processors. This is done by assigning tasks to one or
more threads, which is also known as mapping. Normally there are more tasks
than threads and physical processors, and it is therefore necessary to distribute
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the tasks evenly across all threads. To benefit from having more than one
physical processor and thereby minimizing the execution, several tasks should
run concurrently. Two strategies can be used to achieve this goal:

� Tasks which can be executed concurrently should be mapped to different
threads, so as to enhance concurrency.

� Tasks that communicate frequently should be mapped to the same thread,
as to minimize the overhead associated with communication and to in-
crease locality.

These two strategies can and will often collide and it is therefore necessary to
make some kind of tradeoff. In addition, the number of processors are often
limited, which restricts the number of threads which can be run concurrently.

The above mentioned approach only works well if the number of tasks are known
in advance. If they varies dynamically during the program execution, one needs
to use an algorithm which can distribute new tasks to different processors. This
is known as load-balancing and several effective algorithms or strategies has been
developed to solve this. Two of these strategies is used in this thesis:

� Manager/Worker Scheme1 - The manager/worker scheme consists of
a one Manager (often represented as a single thread) and several Workers
(often represented as several threads). The workers repeatedly request
and process tasks from the manager which maintains a pool of available
tasks. If the tasks size is small the communication overhead between
the manager and the workers would be high. This can however often be
solved by letting several tasks be distributed at each request (if the order
of tasks are not important). The manager/worker scheme is a simple but
effective task scheduling scheme for a low to moderate number of physical
processors. An illustration of the manager/worker scheme can be seen in
figure 2.5.

� Decentralized Scheme2 - In a completely decentralized schemes, there is
no central manager. Instead, a separate task pool is maintained for every
worker, and if a worker has no more tasks to do, it request tasks from the
other workers. In effect, the task pool becomes one large distributed data
structure which is accessed by the workers in an asynchronous manner.
This scheme doesn’t suffer from the communication bottleneck associated
with a centralized manager but it loses the ability to control in which order

1Also known as the Master/Slave scheme.
2Also known as the Distributed scheme.
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Figure 2.5: Overview of the manager/worker load-balancing strategy

the different tasks should be processed. It is also important to decide how
and when the actual communication between the different workers should
take place and how to determine when the execution is completed. An
illustration of the decentralized scheme can be seen in figure 2.6.

Figure 2.6: Overview of the decentralized load-balancing strategy
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2.2.3 Access control

When solving problems concurrently, shared data-structures are often used and
the need for controlling access to these structures becomes important. If two
threads tries to access and write to the same part of the data structure, incon-
sistencies can occur. The basic tools used to secure the access control is locks
and other synchronization primitives. They will not be discussed in more details
in this section as they are the subject of Section 2.3.

2.2.4 Challenges of parallel programming

Developing parallel algorithms consists of many challenges which in some way
influences the performance. This section sums up of the most important chal-
lenges.

Parallel Overhead Parallel overhead refers to the amount of time required
to coordinate parallel tasks, which is at the cost of time of doing some useful
computation. Typical parallel overhead includes the time to start/terminate
a tasks, the time to pass messages between tasks and other extra computa-
tion time. When parallelizing a sequential program, overhead is inevitable, but
should be kept at a minimum by a thorough analysis following the steps de-
scribed in this section. Especially the decomposition and granularity should be
kept in mind when trying to decrease the overhead.

Synchronization Synchronization is necessary in concurrent programs e.g.
to prevent race conditions among threads. Synchronization limits the parallel
efficiency even more than the parallel overhead, as it actually serializes some
part of the program and thereby limits the number of concurrent activities. Im-
proper synchronization can, besides slowing down the execution time, also lead
to incorrect results as it can be a complex tasks to control access to important
parts of the code. Synchronization is hard to automate and it os often the sole
job of a developer to ensure the correctness of the program. Mathematical tools
can help in proving that the synchronization is behaving correctly, but they are
most often very time-consuming and complex to use on larger parts of code.

Load Balance Load balance is important when parallelizing sequential pro-
grams because poor load balance causes under-utilization of the processors. Pro-
cessor idle-time should always be kept at a minimum, but this can be hard if the
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number and size of the different subtasks are unknown at the start of the execu-
tion. Load balance can be achieved using different algorithms and by carefully
analyzing the problem.

2.3 Synchronization primitives

The implementations in this thesis are all based on the shared memory model,
and as mentioned in Section 2.1 synchronization primitives are often used to
control the access to the shared memory locations. One of the most important
techniques to control access to shared memory locations is mutual exclusion, i.e.
to let only one thread into a critical region of code at a time. Mutual exclusion is
the synchronization technique predominantly used in this thesis, and is therefore
the one focused on. Other important techniques worth mentioning are condition
synchronization and true synchronization and these are investigated further in
[16].

This section will introduce the relevant synchronization primitives in the clas-
sical concurrency theory followed by a short introduction to a modern data
structure which doesn’t utilize the classical synchronization primitives [17].

2.3.1 Locks

Locks are the most simple form of synchronization primitive used to synchronize
the communication between different threads. They can be implemented in
many different ways depending on the machine architecture but their task is
almost always the same - to limit the access to a section of code by providing
mutual exclusion. Locks usually consists of two operations - Lock/Acquire and
Unlock/Release - and depending on the implementation, a thread which tries
to acquire a lock is set to wait, if another thread already has acquired the
lock. Locks provides a very fine-grained way of controlling the synchronization
between threads, but is also very error prone, because it is very easy to provoke
deadlocks and starvation. This is due to the fact, that it is up the developer to
make sure, that the lockings are done correctly.
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2.3.2 Semaphores

One of the first multiprogrammed operating systems was developed by E. Dijk-
stra in the mid-1960s [6], and with it came the need for mutual exclusion between
treads in a more controlled way than just by using locks. Dijkstra therefore in-
troduced the semaphore concept. A semaphore relies on locks and is a shared
variable which is initialized to a non-negative integer count which only can be
manipulated by two atomic operations, P (from the dutch word ”proberen”,
meaning ”to test”) and V (from the dutch word ”verhogen”, meaning ”to incre-
ment”). When a thread executes P on the semaphore, the count is tested to see
if it is greater than 0. If that is the case, the semaphore decrements the count.
If the count is 0, the calling thread is set to wait in the queue. When a thread
executes V on the semaphore, the semaphore determines if one or more threads
are waiting in the queue. If so, the semaphore allows one of those threads to
proceed. If no threads are waiting, the count increments.

The classical way of implementing the operations of a semaphore can be seen in
listing 2.1.

1 P(Semaphore s)
2 {
3 wait until s > 0;
4 s := s - 1; /* must be atomic operation */
5 }
6

7 V(Semaphore s)
8 {
9 s := s+1; /* must be atomic */

10 }

Listing 2.1: Semaphore test

Semaphores can be classified as either counting semaphores or binary semaphores.
A semaphore is a counting semaphore if it can assume any non-negative integer
value, and if the semaphore can only assume the values 0 or 1, it is known as a
binary semaphore. A binary semaphore is in many ways the same as a simple
lock.

2.3.3 Monitors

Semaphores and locks are a very effective and fine-grained way of handling the
access to share memory locations, but they are also very error-prone for the
developers. A simple mistake e,g. by forgetting to acquire semaphores in the
correct order, could result in deadlocks making the code unusable. To let the
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developers concentrate on other thing than the synchronization, the monitor
concept was invented.

In the classical monitor approach, as stated by E. Dijkstra, P. Brinch-Hansen
and C.A.R. Hoare ([12]), a monitor object contains a lock which is acquired by
the thread that enters the monitor. If a thread tries to enter the monitor while
another thread has acquired the lock it is blocked. The semantics of the classical
monitor pattern ensures that all threads exits the monitor before they release
the lock and thereby ensuring that only one thread can be in the monitor at
any given time (and thereby securing mutual exclusion). In the classical monitor
approach a thread can exit the monitor by exiting completely or by waiting on
a waiting queue (a condition queue). In both cases the lock on the monitor
is released, and another thread can acquire the lock. A waiting thread can be
woken up by another thread notifying the waiting queue (signaling). In early
implementations, notifying a waiting queue caused a waiting thread to receive
the lock immediately from the signaler. The signaler was then places on a
separate queue waiting to re-acquire to the lock. This method is called Signal-
and-wait but due to implementation overhead [16] it has been substituted by
the Signal-and-continue method. In the Signal-and-continue method the signaler
continues and the signaled thread is woken up and waits to acquire the lock.

2.3.4 Lock-free and wait-free algorithms

Synchronizing the access to a shared data structure can be a complicated mat-
ter and a lot of research has been put into the development of data structures
that doesn’t require the use of the classical synchronization primitives. These
algorithms are known as lock-free and wait-free. Most lock- and wait-free algo-
rithms are developed using atomic primitives provided by the operating system
and the underlying hardware. The most notable of these atomic primitives is
compare-and-swap (often notated ”CAS”). Pseudocode of the CAS primitive
can be seen in listing 2.2.

1 CAS(addr , old , new) = atomic
2 if *addr = old
3 then *addr := new ;
4 return true
5 else return false
6 endif
7 endatomic

Listing 2.2: Compare-and-swap primitive

The CAS takes three arguments: a memory address, an old value, and a new
value. If the address contains the old value, it is replaced with the new value,
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otherwise it is unchanged. Critically, the hardware guarantees that this ”com-
parison and swap” operation is executed atomically. The success of this opera-
tion is then reported back to the program. This allows an algorithm to read a
value from memory, modify it, and write it back only if no other thread modified
it in the meantime. Usually the CAS primitive is used repeatedly until a thread
succeeds in writing to the shared data structure.

2.4 Java Synchronization Primitives

As stated in the previous sections, there exist a number of different synchro-
nization primitives which can be used to control the communication between
different tasks/threads. The programming language used in this thesis is Java
and this section will give an introduction to Java’s take on the different syn-
chronization primitives. The synchronization primitives of Java has evolved a
lot in the most recent versions and can be found in the java.util.concurrent
package. Most of the primitives has been in Java since version 1.5, and has been
improved ever since.

2.4.1 Semaphore - Locks

Java provides the package java.util.concurrent.locks which contains dif-
ferent implementations of the classical lock. The lock follows the classical lock
closely, and provides a very flexible and fine-grained way of designing critical
regions in code. Locks can intersect each other whereas a monitor in Java only
can be contained within another. A critical region in which two locks intersect
can be seen in listing 2.3.

1

2 method () {
3 A.Lock();
4 B.Lock();
5 // Critical region
6 A.Unlock ();
7 B.Unlock ();
8 }

Listing 2.3: Intersection between locks

Semaphores in Java is located in the package java.util.concurrent and is
a standard counting semaphore as described in the previous Section 2.3.2. A
semaphore in Java maintains a set of permits, which can be acquired and released
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by threads. A semaphore in Java accepts a fairness parameter which sets the
order in which permits are handed out. If the fainess parameter is set to false,
no guarantees are made about the order in which threads acquire permits, and if
set to true the permit order is controlled by a FIFO queue (First-In,First-Out).

A Semaphore in Java also contains a number of auxiliary methods, which can
be used to inspect the number of permits, as well as the number of threads
waiting. These methods should however not be used to do any synchronization,
as they are not always up to date.

2.4.2 Monitors

Java contains the synchronized primitive which reassembles the classical mon-
itor idea in many aspects. The Java implementation of the monitor is a bit more
flexible as it allows any kind of object to be used as a monitor lock, and like
the classical approach, it only allows one thread to have acquired the lock at
any given time. In the classical monitor it is possible to have several condition
queues which the different threads can wait at, but in Java there is only a sin-
gle common waiting queue. A Java monitor utilizes the ”Signal-and-Continue”
method as most other modern programming languages. One thing that a pro-
grammer should notice when doing parallel programming in Java is it’s ability
to do spurious wake-ups. A spurious wake-up is when a thread is woken up
even though it hasn’t been signaled. It is therefore important to test if a thread
that reenter the monitor, is allowed to proceed execution, otherwise it should
continue waiting. An example of a monitor which takes spurious wake-ups into
account is given in listing 2.4.

1

2 public class PreventSpuriousWakeUps {
3

4 private int c = 0; //A counter which only should be incremented by one
thread at a time

5

6 public synchronized void increment () { // Synchronized method
7

8 //C should only be incremented if it is less than 5.
9 while(c < 5) {wait();} // While is needed instead of if to prevent

spurious wake -ups.
10

11 c++;
12 }
13 }

Listing 2.4: Testing for spurious wake-ups

The synchronized primitive can be applied at two levels in Java - either by



www.manaraa.com

2.4 Java Synchronization Primitives 23

applying it to a complete method (Synchronized methods) or by applying it to
a single statement (Synchronized statements). This provides the programmer
with the possibility to use a more or less fine-grained type of synchronization.

Listing 2.5 provides a simple example of the difference between a synchronized
method which only one thread can access at a time, and a synchronized state-
ment which only limits the access to a single statement.

1 public class SynchronizedCounter {
2 private int c = 0; //A counter which only should be incremented by one

thread at a time
3

4 public synchronized void increment () { // Synchronized method
5 c++;
6 }
7

8 public void decrement () {
9

10 //Do something which doesn ’t require synchronization ...
11

12 synchronized(this) { // Syncronized statement
13 c++
14 }
15 }
16 }

Listing 2.5: Synchronized method vs. synchronized statement

It is important to mention that by using monitors in Java you have a larger
overhead than by using the more simpler locks and semaphores. If a class con-
tains more than one synchronized method only one thread can access a method
at a time and this can result in unnecessary waiting.
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Chapter 3

Maximum flow algorithms

In this chapter the maximum flow problem is introduced. This includes a general
introduction as well as a more mathematical explanation. This is followed by
an introduction to the maximum flow algorithms used in the thesis with focus
on the Push Relabel algorithm.

3.1 Introduction to the maximum flow problem

The algorithm focused on in this thesis is the Push Relabel Algorithm, which
belongs to the group of algorithms that addressed the Maximum Flow Problem.
The problem or task of the maximum flow problem is to find the maximum rate
which material or data flows in a Flow Network. Just as a directed graph can
be used to represent roads in a city, a Flow Network can too be described by
a directed graph. An easy way to imagine a Flow Network is to think of liquid
running through a system of pipes (e.g. a sewer). The pipes are represented
as Directed Edges in the Flow Network, and because pipes in a system can be
of different sizes and therefore can transport different amounts of liquid, each
directed edge has a Capacity. This capacity is the maximum rate at which
the material (liquid in the pipe-example) can flow through the pipe. It is not
required that the capacity of an edge is being used to full but it figures as an
upper bound.
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The pipes in the system are connected via knots where a number of pipes go
into and a number of pipes leave. These knots are represented as vertices in
the Flow Network. When material (liquid in the pipe-example) runs through
a vertex it will not be collected within the vertex (it has no reservoir), which
means that the amount of material which goes into a vertex must be equal to the
amount of material leaving the vertex. (This will be described later as ”Flow
conservation”). The pipe-system must of course also have a place where the
liquid ”starts” and a place where it ”ends’ - this is represented by special source
and sink vertices in a Flow Network.

To sum up, the Maximum Flow problem is used to find the maximum feasible
flow from the source to the sink in a Flow Network. It both computes the flow
for all vertices and the value of the maximum flow.

3.1.1 Theory & Definitions

This section will cover the basic formal theory used to explain and discuss the
Maximum Flow Problem. The definitions and theory covered in this section
follows the definitions from the section on maximum flow in [5, chapter 26] .

3.1.1.1 Flow network

A Flow Network is a directed graph G = (V,E) with |V | = n vertices and
|E| = m edges. Two vertices in the graph are defined as the source s and sink
t. For every edge (u, v) ∈ E there exists a positive real-valued capacity function
c, so the following applies: ∀(u, v) ∈ E ⇒ c(u, v) ≥ 0. Also if (u, v) /∈ E ⇒
c(u, v) = 0. This means that if the edge is not in the graph it has the capacity
0. An example of a flow network can be seen in figure 3.1.

Figure 3.1: Example of a flow network

A Flow Network can have multiple sources and sinks but this thesis will only
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cover single-source, single-sink networks. If the extended networks were covered,
a supersink and a supersource connected to the sources and sinks via edges with
unlimited capacity.

3.1.1.2 Flow

Given a Flow Network G = (V,E) with source s and sink t and a capacity
function c. A Flow in G is a real-valued function f : V × V → R where R is
the value of the flow over the pair of edges. The function f must satisfy the
following properties:

� Capacity Constraint: f(u, v) ≤ c(u, v) for all u, v in V × V

� Skew Symmetry: f(u, v) = −f(v, u) for all u, v in V × V

� Flow Conservation:
∑

v∈V f(u, v) = 0 for all u in V − {s, t}

In words, the Capacity Constraint says that the flow from one vertex to another
must not exceed the given capacity. The Skew Symmetry defines that the flow
from one vertex to another is the negative of the flow in the opposite direction.
Finally the Flow Conservation says that the total flow going into a vertex must
be equal to the total flow going out of the vertex, hence the sum of the ingoing
and the outgoing flow is zero. This property is often referred to as the ”Flow in
equals flow out”. This is not valid for the source and sink.

The value of the flow of a network is the net flow entering the sink vertex t
and therefore also the net flow leaving the source vertex s. The mathematical
notation of this can be seen in equation 3.1.

|f | =
∑
u∈V

f(u, t) =
∑
v∈V

f(s, v) (3.1)

The goal of the maximum flow problem is to compute the maximum possible
value for |f | and the corresponding flow values for each pair of vertices in the
flow network.

3.1.1.3 Residual network

Given a Flow Network G(V,E) with a flow f . The Residual Network Gf (V,E)
consists of edges which can admit more flow. If an edge (u, v) ∈ E has a flow
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which is lower than its capacity, then the amount of additional flow we can push
before exceeding the capacity c(u, v) is the residual capacity given by equation
3.2.

cf (u, v) = c(u, v)− f(u, v) (3.2)

There are cases where the residual capacity can have a greater value than the
actual capacity. For example if c(u, v) = 8 and f(u, v) = −2 then the residual
capacity is cf (u, v) = 10. This means that there is a flow of 2 units from v to u
which we can cancel by pushing 2 units from u to v. Because the capacity from
u to v is 8, we can push additional 8 units without exceeding the capacity, thus
we have pushed a total of 10 units from u to v.

Residual networks also introduces the concept of augmenting paths. An aug-
menting path represents a simple path from the source s to the sink t which is
in the residual network. Given the definition of a residual network, it follows
that each edge on the augmenting path can admit some additional positive flow
without violating the capacity constraint.

3.2 Maximum Flow Algorithms

This section introduces the different maximum flow algorithms relevant for this
thesis. Usually the algorithms used to compute the maximum flow of a network
are divided into two types [5, chapter 26]:

Augmenting Path Algorithms: These types of algorithms uses the defini-
tion of augmenting paths to push flow incrementally from the source to the
sink. Augmenting path algorithms always complies with the three basic flow
constraints introduces in Section 3.1.1.2.

Preflow Push-Relabel Algorithms: These algorithms start by ”flooding”
the entire network, and then incrementally relieving flow from unbalanced ver-
tices by sending flow towards the sink t or backwards towards the source s
depending on the capacity of their edges. By unbalanced vertices is referred
to vertices where the Flow Conservation is not satisfied. As vertices can be
unbalanced during the execution of the algorithm the flow constraint is not sat-
isfied trough-out the execution. However, the flow constraint is required to be
satisfied when the execution terminates.
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3.2.1 Edmonds-Karp Algorithm

The Edmonds-Karp Algorithm [8] is an implementation of the more abstract
Ford-Fulkerson method [15] which is based on the Augmenting Path theory.
The main idea of the Ford-Fulkerson algorithm is very simple: As long as there
is a path from the source s to the sink t with the possibility to admit more flow
(an augmenting path), flow will and should be sent along these paths. This will
be done iteratively until no path can be found from the source to the sink. The
max-flow min-cut theorem [5, Theorem 26.7] shows that upon termination, the
computed flow will be the maximum flow.

How an augmented path should be found is not precisely described in the Ford-
Fulkerson algorithm and it can be implemented in different ways. The Edmonds-
Karp algorithm is one possible implementation and it basically uses a Breadth-
First-Search (BFS) to find augmenting paths - The computed path is therefore
actually the shortest augmented path from the source s to the sink t. The
pseudo code of the Edmonds-Karp algorithm can be seen in listing 3.1.

1

2 For each edge(u,v) in G
3 Do f(u,v) = 0
4 f(v,u) = 0
5 While an augmenting path p can be found by BFS
6 Do cf(p) = min(cf(u,v) : for all (u,v) in p)
7 For each edge (u,v) in p
8 Do f(u,v) = f(u,v) + cf(p)
9 f(v,u) = -f(u,v)

Listing 3.1: Pseudo code for Edmonds-Karp. cf(u v) is the residual capacity

It has been shown that the running time of the Edmonds-Karp algorithm is
O(V ∗E2) [8]. This should, however, only be seen as the theoretical running time
as in practice the algorithm performs very well on most graph types, especially
on sparse graphs.

3.2.2 Push-Relabel

The Push-Relabel algorithm is of the type Preflow Push-Relabel Algorithms, and
is to date one of the asymptotically fastest maximum-flow algorithms [10].

The algorithm works on one vertex at a time, and it is very local as it only looks
at the direct neighbors to the vertex in the residual network. In each iteration
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of the algorithm, the flow is a preflow, which satisfies:

f(u, v) ≤ c(u, v)

f(u, v) = −f(v, u)

f(V, u) ≥ 0,∀u ∈ V − {s}

The first two conditions are well known from the definition of a flow, but the
last condition is new: This is called the Excess Flow into u, and is the sum of
the flow going into and out of v, which can be written

e(u) = f(V, u)

The way the algorithm works is in short, to push flow from one vertex to others.
To compensate for the excess flow we imagine that each vertex has some ”extra
storage” for temporarily storing the excess flow. Secondly, each vertex has a
height (also called label) - at first the height of the source is set to |V | and the
height of all other vertices are set to zero. The height dictates where to push the
flow. Only a push from a vertex u to v is legal, if the height of u is greater than
for v. That does not mean that a flow from a lower vertex to a higher cannot
be positive, but it is only possible to push flow downhill. The algorithm then
starts by sending as much flow as possible from the source to all of its neighbors
which collects the flow in their temporary storage. From there, it is eventually
pushed downhill towards the sink.

If the algorithm reaches a vertex with excess flow, where the only edges capable
of receiving more flow is either on the same or a heigher level, a relabeling is
performed on the vertex. This means that its height is increased to one unit
more than the height of the lowest of its neighbors to which it has an unsaturated
edge to. This makes sure that there exists at least one outgoing edge where it
is legal to push flow.

The sink will eventually have received the maximum amount of flow it can possi-
ble receive, but the preflow is probably not a valid flow because some vertices do
not satisfy the Flow Conservation constraint. The algorithm therefore continues
to push the excess flow around the network until all vertices have an excess flow
of zero. A consequence of this is that at some point, it is necessary to push flow
back to the source, and it is therefore possible to relabel a vertex to above the
fixed height |V | of the source. It has then been proven, that the flow at the end
is both a legal flow and a maximum flow [5, chapter 26].
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3.2.2.1 Push-Relabel operations

The above introduction to the Push-Relabel algorithm uses the terms ”push”
and ”relabel” as the possible operations the algorithm can choose to take in
each step. A more formal explanation of these two operations is given in this
section.

Push Operation A Push operation from u to v where u, v ∈ V can be ex-
plained as sending some or all of u’s excess flow from u to v. A push operation
is only legal if the following conditions are satisfied:

c(u, v)− f(u, v) = cf (u, v) > 0

e(u) > 0

h(u) = h(v) + 1

The first conditions says, that it shall be possible to admit flow from u to v,
which only is the case if the edge between the two vertices is not saturated,
meaning that the actual flow trough the edge is less than the capacity of the
edge. The second condition says that a push operation only is possible if vertex
u has more ingoing than outgoing flow and thus being an overflowing vertex.
The last condition defines that a push operations only is legal if flow is being
pushed to a vertex with a height which is exactly one unit smaller than the
heigh of u. The amount of flow which can be pushed between two vertices is
determined by the bottleneck of the edge: min(e(u), c(u, v) − f(u, v)). The
pseudocode of the push opration can be seen in listing 3.2.

1 Push(u,v)
2 If e(u)>0 and cf(u,v)>0 and h(u) = h(v)+1 // Checks conditions
3 Do df(u,v) = min(e(u),cf(u,v)) //Finds flow bottleneck
4 f(u,v) = f(u,v) + df(u,v) // Updates flow
5 f(v,u) = -f(u,v)
6 e(u) = e(u) - df(u,v) // Updates excess
7 e(v) = e(v) + df(u,v)

Listing 3.2: Pseudo code for Push operation

Relabel Operation When doing a relabel on a vertex u, its height is in-
creased. A relabel operation is only allowed if u has an excess flow and for every
vertex v with a residual capacity from u to v, the height of v is greater than
the height of u. In short, a relabel operations should only be performed if a
push operation is not possible. A vertex’s height is also called its label (hence
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Relabel-operation). The pseudocode of the relabel operation can be seen in
listing 3.3.

1 Relabel(u)
2 If e(u)>0 and for all v in V such that (u,v) is in Ef we have h(u) <=h(v)
3 Do h(u) = 1 + min(h(v) : foreach (u,v) in Ef) //Add 1 to the smallest

height of the neighbors of u.

Listing 3.3: Pseudo code for Relabel operation. Ef means edges in the residual
network.

3.2.2.2 The Generic Push-Relabel

The generic and original push-relabel algorithm defined by A.V. Goldberg and
R.E. Tarjan [10], starts out by initializing the preflow. The initialization push
as much flow from the source to its neighbors and thereby filling all of its neigh-
boring edges to their capacity. All other edges are initially assigned a flow of
zero. The pseudocode of the initialization can be seen in listing 3.4.

1 Initialize -Preflow(G,s)
2 For every vertex , set height and excess flow to zero
3 For every edge , set flow to zero
4 H(s) = |V(G)|
5 For every vertex u <- Adj(s)
6 Do f(s,u) = c(s,u)
7 f(u,s) = -c(s,u)
8 e(u) = c(s,u)
9 e(s) = e(s) - c(s,u)

Listing 3.4: Pseudo code for initializing the preflow

When the initial preflow in the flow network has been created, the actual algo-
rithm can be executed. The algorithm can be seen in listing 3.5.

1 Generic -Push -Relabel(G)
2 Initialize -Preflow(G,s)
3 While there exists an applicable push or relabel operation
4 Do Select a push or relabel operation and perform it

Listing 3.5: Pseudo code for Generic Push-Relabel

The algorithm, however, is rather abstract and there are a lot of different ways
to implement it. It has been proven, that the order of which the push-relabel
operations are performed, has no significance on the correctness of the result,
but at the same time it has been shown that the order has great impact on the
running time of the algorithm. If the operations were executed in a completely
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random order, the running time is O(V 2∗E). The first optimization is gained by
combining the push and relabel operations in discharge operations in which the
node being processed, performs push and relabel operations until it no longer
has a positive excess flow. This, combined with ordering the active1 vertices in
a FIFO-Queue (First in, first out), results in a running time of O(V 3). If the
queue uses dynamic trees instead of a FIFO-queue the running time is further
improved to O(V ∗ E ∗ log(V 2/E)) and if the queue is ordered by height the
running time will be O(V 2 ∗

√
m).

A special case of the push-relabel algorithm called the Relabel-To-Front al-
gorithm alters the relabel operation by moving relabeled vertices to the front of
the queue of active vertices. The running time of the relabel-to-front algorithm
is the same as the generic push-relabel algorithm using FIFO-ordering: O(V 3)
[5, chapter 26].

3.2.2.3 Push Relabel with Heuristics

The generic implementation of the push relabel algorithm performs very poorly
in practice, which also was the conclusion of work done by A.V. Goldberg and
R.E. Tarjan in [10]. The running times are often be close to the worst case -
this is because the relabel operation is a local operation which only looks the
current vertex and its direct neighbors. The distance to the sink is not taken
into account which often results in pushing flow back and forth in the network
many times during the execution. To improve this, an implementation which
uses heuristics was introduces by A.V. Goldberg and B.V. Cherkassky in [4].

The way the heuristics works is split up into two steps: The first step is to only
look at the residual network and do a Breadth First Search from the sink. At
every iteration the height of the vertex is being set to the actual distance from
the sink, so when the BFS is done all the shortest paths to the sink has been
found and is represented as the height of each vertex in the residual network.

As the residual network is used in the breadth first search, some vertices might
not have been included in the search because no possible path exists from the
vertex to the sink. The next step is therefore to look at the complementary
to the residual network. As above, a BFS will be performed, but this time
from the source. The clever thing about this is, that if an edge is not in the
Residual Network, it cannot admit any more flow towards the sink and should
therefore push the flow backwards towards the source. By doing this second
step, the algorithm can easily push excess flow back towards the source at an

1An active vertex is defined as a vertex with an excess flow above zero.



www.manaraa.com

34 Maximum flow algorithms

early stage of the execution and thereby minimizing the need for pushing flow
around several times.

When doing these BFS-algorithms, all vertices in the network are relabeled with
respect to the distance to the sink and source respectively - this is called doing a
Global Relabeling. These global relabeling procedures are computational heavy
compared to push and relabel operations and are therefore only done periodically
after a given number of push/relabel operations. The theoretical running time
of the Push Relabel algorithms with Global Relabeling is the same as the generic
algorithms mentioned earlier, but in practice it is much faster because of the
distance-ordering of the vertices. Studies [4] have shown, that by using the
Global Relabeling heuristics the push relabel algorithm outperforms all other
known maximum flow algorithms on most graph types.

Another type of heuristics mentioned by A.V. Goldberg and B.V. Cherkassky
in [4] is the Gap Labeling Heuristic. This heuristic updates the labels of the
vertices which are unreachable from the sink and sets their label to the label
of the source, which is |V |. Such a situation arises if there are no vertices with
labels g, but vertices v with labels g < label(v) < |V |. Then the sink is not
reachable from any of these vertices and their labels can be increased to |V |.
Such an update makes it possible to remove these vertices from consideration
for pushing flow to the sink at once. The improvement of the Gap heuristics is
not as great as with the Global Relabeling heuristic, but it can to some extend
be combined with the global relabeling heuristic and thereby resulting in a very
effective Maximum Flow algorithm[4].
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Chapter 4

Parallelization of the push
relabel algorithm

In this chapter we present the parallelization of two variant of the classical
maximum flow algorithm Push-Relabel. The level of detail is increasing during
the different sections, starting out with a high-level analysis using the step-
by-step parallelization method presented in [11], followed by a more detailed
explanation of how the actual implementation has been done using Java.

4.1 Analysis

The push relabel algorithm consists of a lot of independent operations (push &
relabel) which can be processed in any order without violating any of the central
Lemmas concerning maximum flow. Due to the many independent operations,
the algorithm could be a good candidate to achieve maximum performance
increase using parallelization.

As mentioned in Section 3.2.2 there exists a number of push relabel algorithms
using different queues and heuristics. This section will focus on parallelizing a
simple push relabel algorithm with FIFO1 queue ordering, and a more complex

1FIFO is an acronym for First In, First Out.
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push relabel algorithm with global relabeling heuristics. For each of the two
algorithms, the parallelization steps will be explained and the approach used is
the one already described in Section 2.2: Decomposition, mapping and access
control. A more detailed explanation of how the two algorithms has been im-
plemented using Java, can be found in Section 4.2 and an overview of the source
code can be found in Section 4.3.

4.1.1 Simple Parallel Push Relabel

4.1.1.1 Decomposition

The first step of the parallelization is the decomposition into tasks. A natural
and perhaps a bit naive approach would be to define a task as a single push or
relabel operation. This would, however, be a very fine-grained decomposition
and would probably, especially in Java [9, Chapter 15.1], create a lot of syn-
chronization overhead. The solution used in this thesis is to define a task as a
complete discharge of a single vertex. This is a more coarse-grained solutions
which could perform well on the Java architecture. By performing a complete
discharge, push operations are performed in combination with relabel opera-
tions until all excess flow of a vertex is removed. A vertex can therefore be
removed from the queue of active vertices when a complete discharge has been
performed.

4.1.1.2 Mapping

The task size of the push relabel algorithm can be defined in advance but the
number of tasks is unknown and varies over time. A complete discharge of a
vertex can result in several new active vertices and thereby new tasks. This
can not be predicted and a load balancing solution should therefore be applied.
Without a load balancing algorithm one or more threads/processors could run
out of work and would become idle.

The two load balancing strategies mentioned in Section 2.2.2 has been considered
and resulted in the following two solutions:

� Manager/Worker: Consists of a centralized manager thread which main-
tains a global queue containing all active vertices and a number of worker
threads (e.g. one per physical processor). Each worker thread repeatedly
fetches a batch of active vertices from the manager, process them (using
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complete discharges), and returns all newly discovered active vertices to
the manager. The most efficient batch size can be hard to determine as
all sizes has different impacts on the performance. A large batch size min-
imizes the communication overhead but the order in which the vertices
are processed is different than the sequential FIFO queue implementation,
which studies shows can lead to a performance decrease. If the batch size is
small the communication overhead is increasing but the vertex processing
order is almost identical to the sequential implementations of the queue
variant of the push relabel algorithm. An illustration of the manager/-
worker load balancing implementation can be seen in figure 4.1.

Figure 4.1: Overview of the manager/worker load-balancing implementation

� Decentralized: When the initial preflow is created, the active vertices are
distributed to each of the worker threads equally. Each worker thread then
works autonomously by processing its own active vertices and adding the
newly discovered active vertices to its own list of vertices to be processed.
In an ideal execution, each worker thread does not run out of work before
any other thread, and when the threads are done processing their own list
of active nodes the computation of the maximum flow is complete. This,
however, almost never hold in a real world execution. A worker thread
probably runs out of work to do at some point during the execution and
should therefore request work from the other worker threads. This is
solved by keeping track of the idle threads and if a thread discovers a new
active vertex while there is an idle thread it adds the vertex to a global
queue instead of its own local queue. The idle thread is then woken up
and fetches the active vertex from the global queue. The advantages of
using this load balancing solution is that the communication overhead is
keep to a bare minimum but this is at the cost of the vertex processing
order which is often far from the FIFO queue ordering of the sequential
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push relabel algorithm. An illustration of the decentralized load balancing
implementation can be seen in figure 4.2.

Figure 4.2: Overview of the decentralized load-balancing implementation

4.1.1.3 Access Control

Both of the above mentioned load balancing strategies utilize a shared queue at
some point. The manager/worger strategy utilizes the queue all the time and
the decentralized strategy only utilizes the queue when a thread becomes idle.
In both cases, more than one thread can try to manipulate the queue at the
same time and without proper access control the data could become inconsistent.
Two possible solutions to this problem has been identified:

1. The queue is implemented as a standard FIFO queue and the access to the
list is controlled via Locks or semaphores. Before manipulating the list
(read and write) a thread has to acquire the lock to the queue and when
it is done it releases the lock. This solution is a well known way to handle
access to a shared resource but could suffer from a large synchronization
overhead.

2. The queue is implemented using a wait-free algorithm as described in
[17]. This requires that the programming language supports atomic in-
crement operations and is only efficient if the operation system supports
the compare-and-swap operation (see Section 2.3.4). This solution is often
more intuitive to the programmer as he or she doesn’t have to take the
actual synchronization into account, but it could be less efficient than a
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solution based on classical synchronization primitives due to an inefficient
implementation of the wait-free algorithm.

Several other possible solution to the shared queue access control exists and one
of them would be to use monitors instead of locks/semaphores. This would be
a more controlled environment for the programmer leaving less room for human
error, but this has not been implemented because the monitor implementation
in most languages suffers from performance decrease compared to simple lock-
s/semaphores.

Another important access control issue to address in regards to the push relabel
algorithm, is the actual data structure of the vertices and edges. The algorithm
repeatedly performs push and relabel algorithms to vertices in the graph, and
it would be possible for more than one thread to perform an operation on the
same vertex at the same time. A solution to this problem has been presented
in [2] and is fairly straight forward:

� Push - A thread must acquire the lock on both the vertex which flow is
pushed from and the vertex which flow is pushed to. As two locks can’t
be acquired at the same time it is important to always lock vertices in the
same order to avoid deadlocks (eg. if one thread locks vertex A and tries
to lock vertex B which already is acquired by another thread that tries
to lock Vertex A). This is handled by always locking the vertex with the
lowest ID number first.

� Relabel - A thread must acquire the lock on the vertex it tries to relabel.

4.1.2 Parallel Push Relabel with global heuristics

The parallel push relabel algorithm with global relabeling heuristics is in many
ways similar to the simple push relabel algorithm with a FIFO queue. The only
difference is the heuristic function which is described in Section 3.2.2.3.

4.1.2.1 Decomposition

The decomposition into smaller tasks is similar to the simple algorithm but a new
kind of tasks is now present due to the global relabeling. The global relabeling
consists of two breath first searches which is executed a number of times during
the execution of the algorithm. The heuristic function could be decomposed into
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even smaller tasks which could be distributed to more processors but this has
not been done in this thesis, mainly due to the fact that only a limited number
of processors were available.

4.1.2.2 Mapping

The global relabeling could be mapped to physical processors in different ways.
One possible solution would be to let the different threads do their normal
routine of push and relabel operations and once a while let one of the threads to
a global relabeling (eg. every n push/relabel operations). However, studies have
shown that the heuristics plays a very important part in the performance and
should not only be granted the resources of one thread once a while. Another
solution would be to let all threads do the global relabeling together at a given
interval. This would probably be the most optimal solution (as suggested by
[4]), but is also more complicated to implement as the breath first search also
needs to be parallelized. The solution chosen for this thesis is to let one worker
thread do the global relabeling continuously throughout the execution. This
gives the global relabeling more priority than the first solution but less than the
second.

4.1.2.3 Access Control

In the simple push and relabel algorithm only the push and relabel operations
manipulated the vertices, but this changes with the introduction of the global
relabeling function. The function relabels vertices to a value corresponding to
their ”distance” to either the sink and source and should therefore acquire a lock
on a vertex before performing any relabeling. If the relabeling was performed
by several threads at the same time as normal relabeling and push operations,
more restrictions and locking mechanism should be implemented to avoid in-
consistencies. This is described in [4] and will not be examined further in this
thesis.

4.2 Design

This section will cover the general design of the algorithms and the underlying
graph framework. A basic graphical user interface (GUI) has also been devel-
oped to ease the testing of the algorithms and it will be discussed in Appendix
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B. The section is intended to be programming language independent but several
object oriented concepts are used throughout the section.

To ease the clarity of the algorithms and the framework, all related objects has
been divided into packages. This is best practice in most programming languages
and makes it a lot less complicated to acquaint oneself with the framework.

Our design is divided into the following sub-domains which all should be repre-
sented as a package2:

� algorithm: The top package for all algorithm related subdomains.

� algorithm.parallel: Contains all versions of the parallelized algorithms.

� algorithm.reference: Contains the reference-algorithms which are used
to determine the correctness of the results gained from the parallelized
algorithms.

� algorithm.sequentiel: Contains the basic sequential push relabel algo-
rithms.

� edge: Contains all classes related to edges in a graph.

� vertex: Contains all classes related to vertices in a graph.

� graph: Contains all classes related to the representation of a graph.

� graph.generator: Tools/classes for generating new graphs of different
types.

� graphLoader: Tools for loading a graph from its file-representation into
memory.

� gui: The graphical representation of the framework.

� statistics: The tools used when measuring runtimes and other statistics
when executing the algorithms.

� test: Contains all tools related to the testing of the correctness of the
algorithms.

All the above packages defines the graph framework and the algorithms. The
design of the individual packages as well as the interaction between the packages
will be explained in the following sections.

2The prefix dk.dtu.imm.parallelmaxflow has been removed from the package names to ease
the understanding.
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4.2.1 Design Overview

The following sections gives an overview of how the actual framework and al-
gorithms are designed. The design is language independent and a programmer
should be able to implement a working program by following the design in com-
bination with the analysis from Section 4.1.

Throughout the design we have chosen to create Interface’s for every object.
This eases the integration with new or existing frameworks and it is important
that the interfaces are used to access objects instead of accessing objects directly.

4.2.1.1 Graph Framework

This section will describe how a Graph and its components are being repre-
sented. There exists several pre-made Graph Frameworks such as JUNG 3[18],
which represents graphs, edges etc, but we chose to make a simple framework
from scratch. This decision has been made to maintain full control of all data
structures, and it allow us to define the exact functionality and definitions. One
limitation of using our own framework is that it is harder to utilize pre-made
graph illustration tools, but as graph illustration never has been the target of
this thesis, it is not an important shortcoming.

An UML-like illustration of the complete graph framework is shown in Figure
4.3.

As describes earlier, all classes implements an interface and all relations between
classes passes trough these interfaces. In the following paragraphs, the details
of every class in the graph framework will be described.

Vertex A Vertex is very simple in our framework. It only consists of an
identifier to make it uniquely determinable. A vertex could also simply have
been represented by index numbers in an array, but as this thesis is written
with the Object Oriented programming paradigm in mind, we have chosen to
let a vertex be a class of its own.

Edge As the name implies, this is a representation of an edge in a graph. It
contains information about the two vertices it connect (source and target), and
a reference to the complement edge - that is, the edge which has opposite source

3JUNG - the Java Universal Network Graph Framework
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and target respectively. An edge also contains information about its current flow
and capacity which both can be set or retrieved.

EdgeContainer The EdgeContainer class contains a list of EdgeInterface’s
and is in other word a wrapper. The reason for using a wrapper to contain
edgeInterface’s is to have a standard way of collecting edges. If there is a
need to change the data structure in which the edges is collected in, only one
class should be changed.

Graph A Graph contains information of all vertices in the graph. The graph
has association to several vertices and two vertices are explicitly defined as being
the source and the sink. The graph also has references to several EdgeContainer-
objects. There exist one EdgeContainer for each vertex, and EdgeContainers
are used to represents all outgoing edges for the corresponding vertex (the neigh-
bours of the vertex).

4.2.1.2 The Algorithms

This section describes how the algorithm framework is designed. An UML-like
illustration of the complete algorithm framework is shown in Figure 4.4.

From figure 4.4, it is shown that every algorithm implements the MaxFlow
AlgorithmInterface. This makes it easy to develop new algorithms and use
it in our existing framework. An abstract object MaxFlowAlgorithm repre-
sents the basic functionality in a Maximum Flow algorithm without the actual
algorithm. The packages algorithm.reference and algorithm.sequentiel
contains algorithms which are extending by the MaxFlowAlgorithm and will
not be discussed further as the title of the classes should be self explaining.

The algorithm.parallel-package contains all the parallel implementations of
the algorithms. In this package, some classes are introduced:

PushRelabelParallelWorker This class acts as the worker mentioned in the
load balancy strategies discussed in 2.2.2. It performs the relabel and push op-
erations and because it extends a thread it can have multiple instances running
simultaniously.
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Figure 4.3: An illustration of the Graph Framework

Figure 4.4: An illustration of the structure of our Algorithms
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PushRelabelParallelWorkerHeuristics The purpose of this class is to do
the global heuristics described in Section 3.2.2.3 with a Breadth First Search.
It extends thread so it can run simultaniously with other processes.

PushRelabelParallel Works as an ”organizer” or manager which creates a
number of worker threads and ”distribute” the subproblems to them. The
worker threads are represented by PushRelabelParallelWorker’s and the num-
ber of associated workers are defined by the number of processes chosen.

PushRelabelParallelGlobal The ”organizer” for the Global Heuristics im-
plementation of the Push Relabel algorithm. As shown on figure 4.4 the class has
several PushRelabeParallelWorker ’s just like the PushRelabelParallel -class, but
because of the heuristics, it references a PushRelabelParallelWorkerHeuristics
as well.

4.3 Implementation

This section will describe important details on the implementation of the al-
gorithms. We will not go in details of the complete implementation but only
describe the significant parts. For details on the complete source code see Ap-
pendix C.

4.3.1 General implementation overview

Overall there has been a focus on using fast data structures which ensures
good performance, but at the same time using data structures which has great
flexibility and makes use of all the benefits of Object Oriented Programming.
Throughout the implementation there has been a tradeoff between performance
and flexibility, e.g. if the choice was to choose between a standard Array or an
ArrayList the ArrayList would be selected even though it has a slight drop
in performance. This is because the ArrayList does not have a fixed size, and
therefore makes it easier to add objects.

As mentioned earlier all algorithms inherit from the same abstract class. This
class is illustrated in figure 4.5.

The method ComputeMaxFlow() of the MaxFlowAlgorithm class is abstract,
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Figure 4.5: The abstract class which all algorithms inherits from.

because this implementation differs for the different kind of Max Flow algorithm.
The CalculateMaxFlow method, on the other hand, is implemented directly in
the abstract class, because no matter how the maximum flow is computed, the
result is always extracted from the graph the same way, that is, to look at the
amount of flow going out of the source. The GetStatistics() method is for
benchmark-testing and documentation for our Statistics-framework can be seen
in Appendix D.

The Edmonds-Karp reference-implementation also inherits from the MaxFlow
Algorithm’s class but as it is simply a reference implementation, this section
will not go into futher details. One should refer to the source code for more
details on the reference implementations.

4.3.2 Common Push Relabel implementation details

All Push-Relabel algorithms have some common behavior and implementation
choices, which will be described in this section.

Initialization The initialization of the graph in the different Push Relabel
algorithms is almost identical (small changes can occur because of different
data structures). The initialization method is straight-forward and does exactly
what is described in Section 3.2.2.2. The method for initialization is called
initialize().

Excess flow and labels Common for all algorithms are that information
about vertices and edges which only is relevant for the Push Relabel algorithms,
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are kept in a central place rather than being kept ”inside” the vertex or edge
itself. The main reasons for this is to only keep general data at the vertices
and edges and thereby making the graph framework more generic for use in the
future. If some information is relevant for all Maximum Flow algorithms, such
as flow and capacity, it will naturally be kept inside an edge.

In all of the push relabel algorithms, two HashMap’s are created, both with
VertexInterface as keys and Integer as value. These HashMap’s represents
excess flow and labels respectively. The reason for selecting the HashMap data
structure is to make the lookup of values for the different vertices and edges
easier.

Push/Relabel-Methods The push and relabel methods are almost identi-
cal among the different algorithms. They are implemented straight forward as
describes in Section 3.2.2.1. Small deviations among the implementations occur
because of different data structures.

4.3.3 Sequential implementation details

This section will describe the implementation of the sequential Push Relabel
algorithms.

4.3.3.1 Naive Push-Relabel

This implementation is the most naive and straight forward implementation
and does not use the discharge-method (as mentioned in Section 3.2.2.2). It
contains Java’s Queue containing all active vertices. In the initialization this
queue will be populated with the neighbors of the source and the algorithm will
then process the vertices by the First In First Out-principle.

The algorithm implements the method int ComputeMaxFlow() which works as
the main-method which is implementing with a while-loop which runs until no
active vertices exists in the queue. A helper method has been implemented called
void performOperation(VertexInterface u) which determines if a push or
relabel operation should be made.

The push- and relabel-methods are implemented straight forward as described
in Section 3.2.2.1.
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4.3.3.2 Push Relabel

This implementation is almost the same as the naive Push Relabel algorithm
(Section 4.3.3.1), but it discharge’s a vertex completely before doing any rela-
beling. The list of active vertices is again implemented by Java’s Queue and the
method ComputeMaxFlow() is still implemented with a while-loop which runs
until no vertex is on the queue.

Important methods:

void discharge(VertexInterface u) This is the discharge-method which is
called in each iteration of the loop describes above. It takes the vertex from
the argument and process it until it has no excess flow. A while-loop iterates
trough all the neighbors of the vertex u, and pushes flow to them, as long as
the the excess flow of u is greater than zero. If it is not possible to push flow to
any of u’s neighbors, u is relabel and the push operations proceeds again.

4.3.3.3 Push Relabel To Front

This implementation is almost identical to the Push Relabel-implementation
mentioned above and the strategy of finding the maximum flow is identical.
The main difference is, that the discharge-method will not iterate until the
vertex has no excess flow, but only until no push operation is possible.

After iterating trough all neighbors it will do a relabel on the vertex if it has
an excess flow. If the new label is greater than the old, it will be put in front of
the list and be processed first.

4.3.3.4 Push Relabel Global Heuristics

This implements the heuristics described in section 3.2.2.3. The implementation
is much like the implementation described in Section 4.3.3.2 with one addition
to the ComputeMaxFlow()-method. The Push Relabel algorithm with heuristics
checks if the number of discharge operations performed is greater than the graph
size and if this is true it performs a global relabeling. The addition to the
ComputeMaxFlow()-method can be seen in listing 4.1.

1 if(noOfDischarge >= this.graphSize)
2 {
3 this.globalRelabeling ();
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4 noOfDischarge = 0;
5 }

Listing 4.1: Global Heuristics

The globalRelabeling() method applies the heuristics to the graph and is
implemented as a breadth first search as described in section 3.2.2.3.

4.3.4 Parallel implementation details

The implementation of the parallel algorithms will be discussed in this section.
The different implementations of the parallel push relabel algorithm have a lot
of functionality in common. This section will describe these commonalities as
well as the differences between the algorithms.

Locking vertices If a vertex is being processed, it should not be accessed by
other threads. The solution to this, is to have a central Map<VertexInterface,
Lock> to keep track of which vertices are being processed. The Java Lock is an
Interface, and we have used ReentrantLock when implementing. This can be
seen as a Binary Semaphore described in Section 2.3.2. By using a Map we make
a tradeoff in the performance area, but avoids the risk of inconsistency which
could occur if a normal array was used.

Determine when the computation is done When doing concurrent pro-
gramming it is not always easy to determine when the computations are actually
finished. When the main-class creates all the threads it simply waits until sig-
naled that the computation is done. A solution could be to have a flag in the
main class represented as a boolean data type and when a thread finds out that
the computation is done, it will change the value of this flag. This solution how-
ever, will result in a busy-wait which will result in a decrease in performance.
A better solution, and the one we chose, is to implement it as a Semaphore
which is initialized to zero. When all threads have been created, the main-class
performs an Acquire-operation on the semaphore and therefore does nothing
until a Release operation is used on the semaphore. When a thread computes
that the algorithm is done, it therefore simply releases this semaphore and the
main-class is woken up and terminates the program.

The way a thread finds out if the computation is done, is implemented in the
following way:
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1 if(idleThreads == this.organizer.getNoThreads ())
2 {
3 this.organizer.computationIsDone ();
4 }

Listing 4.2: Computation is done

In words, listing 4.2 checks if the number of threads which has no tasks is equal
to the total number of threads. If this is the case it means that there is no more
work left and thus the algorithm is done. The worker thread then signals the
semaphore which the organizer waits at and the program terminates.

Creating and stopping threads When the algorithm is being started it has
to create a number of threads. This is done straight forward because the Worker-
classes all inherit from the Java Thread class. When stopping the threads, we
have a method in the organizer-class called stopThreads() which interrupts all
threads. The threads thereby throws InterruptedExceptions which are then
caught inside the threads and terminates them.

4.3.4.1 Mapping

The actual mapping of tasks to the different worker threads can be done in
many ways, and should be considered very thorough and is essential for the
performance.

In section 2.2.2 three possible mapping strategies were proposed and these have
been implemented in the following way:

S1 This strategy is the most simple to implement and uses the Manager/-
Worker mapping-scheme. It uses Java’s ConcurrentLinkedQueue which
is an efficient Wait-free-algorithm described in Section 4.1.1.3 and min-
imizes the use of access control-management. The task-mapping is very
simple: The workers gets an active vertex from the manager, process it
and puts it back onto the Queue in the manager. Because the tasks are
so small, some overhead will occur from the communication between the
manager and worker. The implementations using this strategy are named
PushRelabelParallel2 and PushRelabelParallelWorker2.

S2 This strategy also uses the Manager/Worker scheme, but instead of only
fetching one task from the shared Queue it receives a batch of tasks. This
is done to minimize the communication overhead between the threads.
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In this strategy a normal FIFO-Queue is being used because the access
to the queue will not be as congested because of the batches of ver-
tices. Each worker has two queues - one with active vertices and and
one with processed vertices. Whenever the output-queue has reached the
batch-size, the thread sends the vertices back to the manager. The im-
plementations using this strategy are named PushRelabelParallel3 and
PushRelabelParallelWorker3.

S3 This is the only implementation which uses the Decentralized Scheme. When
initializing and creating the threads all active vertices in the preflow are
assigned equally to all the workers. From there, all workers will mainly
put newly found active vertices on their own local queue an process them.
When a worker runs out of active vertices it goes into idle-mode. When
a non-idle threads discovers a new active vertex while there are other
threads idle, it will add the vertex to a global queue instead of its own
local queue. This is done in the addOutput(VertexInterface) method
which can be seen in Listing 4.3. This scheme ensures that there is only
minimal communication between the different threads.

1 protected void addOutput(VertexInterface u)
2 {
3 idleLock.lock();
4 if(idleThreads }= 0)
5 {
6 this.organizer.addActiveVertex(u);
7 idleQueue.signalAll ();
8 }
9 else

10 {
11 this.localActiveQueue.add(u);
12 }
13 idleLock.unlock ();
14 }

Listing 4.3: Global Heuristics

In theory, strategy number three is the fastest as the communication between
threads, which often is the bottleneck in parallelization, is minimized. The
practical performance of the three strategies are tested in Section 5.4.1.

4.3.4.2 Implementation of Global Heuristics

The implementation of the Parallel Push Relabel with Global Heuristics is al-
most identical to the implementation without heuristics. The only addition
is that when creating all the threads an additional thread is being created -
the PushRelabelParallelWorkerHeuristics whose only job is to repeatedly
compute the Global Heuristics. Instead of running the heuristics after a fixed
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number of discharge-operations as in the sequential version, it is running con-
stantly. The main reason for this is because of a more simple implementation
and in future versions the heuristic function should also be parallelized.

4.4 Test

When developing and implementing an algorithm it can be hard to verify and
prove that the algorithm performs as it should. In the case of this thesis, the
focus is on the parallelization process and performance and not necesarrily on
proving correctness. The push relabel algorithm has been proven to be correct
in earlier studies [10] and these results are relied on in this thesis. Futhermore,
when developing a concurrent algorithm, it can be even harder to verify if the
program complies with the stated safety and liveness properties. One way to
do this is by using a tool like the SPIN verifier [13], to actually prove that the
properties hold at all times, but this is out of the scope of this thesis.

That said, the algorithms has been tested extensively during the work of the
thesis. The testing has mainly been performed using reference algorithms and
graphs with known maximum flows. All test-graphs has been tested using both
the reference algorithms, and the developed algorithms, and in all cases the
maximum flow has been the same. The test-graphs are large in size and quite
different from each other, and to some extend, this ensures that the developed
algorithms are performing correctly.

If the time had allowed it, unit testing of all important methods should have
been performed, but this was outside of the scope of this thesis.
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Experimental Results

In this chapter we present the results of the experiments perform during the work
of this thesis. This includes a description of the test setup and a discussion of
the results obtained during the experiment.

5.1 Hardware and programming language

The experiments were conducted on two different setups:

� SYSTEM1: Lenovo Thinkpad T61 with one 2.16 ghz Intel Core2 Duo
processor with 2 cores. The processor is equipped with 4 MB level 1 cache.
The system is running Windows XP SP3 and it is equipped with 2 GB of
memory. The system is a using the Shared memory model as described in
Section 2.1.

� SYSTEM2: Sun Fire E25K (newton.gbar.dtu.dk) with 72 UltraSPARC
IV+ dual-core CPUs (1800 MHz/ 2 MB shared L2-cache, 32 MB shared
L3-cache). The server is running Solaris 10 operating system and is
equipped with 416 GB of memory. The system is a using the Shared
memory model as described in Section 2.1.
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The purpose of SYSTEM1 is to test the parallel performance of the developed
algorithms on a general purpose PC or laptop. SYSTEM1 only has 2 cpu cores
and it would have been preferable to have 4 or 8 cores instead. This, however,
was not available at the time of the experiment.

The purpose of SYSTEM2 is to test the parallel performance of the developed
algorithms on specialized high performance computer with a high number of
cpu cores.

The developed algorithms has been implemented using the Java programming
language and has been compiled using both Java version 1.5.0 13 and 1.6.0 05.
The reason to use two different compilers is to investigate a possible performance
difference.

5.2 Input graphs

This section describes the the graph format used in the thesis as well as the
different graph types used for testing.

5.2.1 Graph Format

To have some common ways of handling and storing graphs, all graphs stored
in our framework inherits the definitions from the DIMACS Challenges [7]. The
DIMACS format is a way to represent graphs in plain text-files and has the
following specifications for lines in the file:

Comment Lines ”c this is a comment” - Comment lines can appear any-
where and are ignored by programs.

Problem Line ”p sp n m” - The problem line is unique and must appear as
the first non-comment line. This line has the format on the right, where n and
m are the number of nodes and the number of edges, respectively.

Edge descriptor lines ”a U V W” - Edge descriptors are of the form on the
left, where U and V are the tail and the head vertex id’s, respectively, and W
is the edge weight.
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Node Definition ”n U W - Defines a node to either a source or a sink. U
determines if a source or a sink is being defined and must be either the character
s or t for source or sink respectively. W tells which node (the ID-number) has to
be defined.

5.2.1.1 Graph Types

The developed algorithms has been tested on several kinds of graphs to examine
how the performance is influenced by adjusting different factors. The graph
types are inspired by the problem families used in the DIMACS[7] contest and
are as follows:

AK graph The AK graph type was introduced by Boris V. Cherkassky and
Andrew V. Goldberg [4]. A graph of this type is generated using a single pa-
rameter k and consists of 4k + 6 vertices and 6k + 7 edges. The AK graph type
was developed to produce problems that are especially hard for the push-relabel
and Edmond-karp algorithms. The acronymm ak will henceforth be used to
designate AK graphs.

Grid graph The Grid graph is composed of a grid of n1 · n2 vertices. Each
vertex is connected to its neighbors in the grid with an edge. The capacity of
an edge is selected randomly in a specified range. The source is located in the
top left corner of the grid and the sink is located in the lower right corner. It
is possible to specify a probability value used to determine if a vertex should
have an edge to one of its neighbors. An example of a grid graph can be seen in
figure 5.1. Two subclasses of this graph type has been used in the experiment:
GridW, in which the graph is 4 times as wide as it is long, and GridL, in which
the graph is 4 times as long as it is wide.

Row graph The Row graph was introduces by Richard Anderson and Joao C.
Setubal [2]1 and is composed of n1 number of rows each containing n2 vertices.
Each vertex in a row is connected via edges to n3 vertices in the next row. The
capacity of each edge is randomly selected from a specified range. The source
is connected via edges to each vertex in the first row and all vertices in the last
row are connected via edges to the sink. All edges from/to the source/sink has a
capacity specified by the maximum capacity possible between ordinary vertices.
An example of the grid graph can be seen in figure 5.2. Two subclasses of this

1Originally known as Random level graph
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Figure 5.1: Example grid graph

graph type has been used in the experiment: RowS, in which there are a few
number of edges between each each row (2 edges per vertex in a row), and RowD,
in which there are many edges between each row (8 edges per vertex in a row).

Figure 5.2: Example row graph

5.3 Test principles

The following methods and principles were used during the experiment:

� For each graph type several graphs of different sizes was generated. See
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Appendix A for a complete description of all the graphs used in the ex-
periment.

� For each graph instance, 3 runs with each algorithm was conducted and
the running time is calculated as a mean of these 3 runs.

� For each parallel algorithm all graph instances were tested using 1/2/4
threads on SYSTEM1 and 4/8 threads on SYSTEM2 2.

� The running time of each run does not include input and output time.

� All tests were performed with the java virtual machine flag
-XX:AggressiveHeap. This flags ensures that the virtual machine allo-
cates a sufficient amount of heap space for the compution.

� The running times of the algorithms are calculated using the Java com-
mand System.currentTimeMillis().

� The speedup gained from parallelization is defined as the running time of
the sequential implementation divided by the parallel running time.

5.4 Test results and discussion

During the experiment several tests have been performed to verify the differ-
ent aspects of parallelization. The parallelization of the simple push relabel
algorithm is first tested using different load-balancing strategies to determine
the most efficient implementation and then the most efficient implementation
is compared to the reference sequential algorithm. This is followed by a test of
the more advanced push relabel algorithm with global heuristics in comparison
with a reference sequential algorithm also with global heuristics. Following the
individual testing of the algorithms is a final comparison between all the im-
plemented algorithms. Both the simple and the more advanced algorithm are
tested on both test systems to clarify if the underlying hardware and operating
system has an impact on the performance.

5.4.1 Results of the simple push relabel algorithm

As mentioned in the analysis of the parallelization potential of the simple push
relabel algorithm (see Section 4.1.1) different load-balancing algorithms/strate-
gies should be considered. In the experiment three versions has been tested:

2The number of threads does not necessarily maps to the exact same number of physical
processors.
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One version of the decentralized scheme and two versions of the manager/worker
scheme (one using a global standard queue and one using Java’s datastructure
ConcurrentLinkedQueue which eliminate the need for locking mechanisms).
The running time of the different implementations can be seen in figure 5.3 (the
tests have been performed with 2 threads on SYSTEM1).

Figure 5.3: Test of different load-balancing strategies on SYSTEM1

It is clear from the results that the decentralized scheme is the most efficient
load-balancing algorithm on most graph types, and in all of the following tests
this is the scheme used. It is, however, interesting to see that the manager/-
worker solution which utilizes the wait-free datastructure from JAVA is per-
forming so well. This solution has been much easier to implement, and it could
easily become very useful tool for developers.

The reason why the decentralized scheme outperforms the two other load bal-
ancing schemes, is probably because it minimizes the need for synchronization,
as the worker threads rarely needs to access the global queue. Another plausible
explanation of why the master/worker scheme is not as effective as the decen-
tralized scheme, could be because threads would spend too much time waiting
to acquire a lock on the shared queue. This, however, does not seems to be
the case. After an extensive test performed using the Eclipse Test and Perfor-
mance Tools Platform (TPTP)3, it can be concluded that only a minimal time
is spend in queues waiting to acquire locks. A graphical representation of the
results gained from running the TPTP tool can be seen in figure 5.4, in which
the two worker threads has been emphasised. It is clear from the figure that the
two threads only spends a very minimal time waiting to acquire locks.

Another important thing to notice with regards to the results, is despite that
the decentralized scheme cannot ensure in which order the active vertices are

3A performance suite developed by the Eclipse team which among other things provides
the developer with tools to measure parallel performance. See http://www.eclipse.org/tptp/
for more details on the tool and its purpose
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Figure 5.4: TPTP test results

processed this doesn’t seem to have any great impact on the performance. Ear-
lier studies [10] have shown that it is important to process vertices in either
FIFO ordering or by processing the nodes with the largest labels first, but to
some extend the results in this thesis shows that the order doesn’t have to follow
the FIFO ordering strictly to be effective. It should be mentioned that this has
not been investigated any further in this thesis and is therefore not a conlcusive
result.

After selecting the most efficient load balancing strategy the parallelized version
of the simple push relabel algorithm was tested against a sequential version
of the same algorithm and a reference implementation of the Edmonds-Karp
algorithm. The test results can be seen in figure 5.5 and 5.6.

Figure 5.5: Push Relabel test result on SYSTEM1

The most important results regarding the purpose of this thesis is that the
parallelized version of the algorithm is significantly faster than the sequential
algorithm on SYSTEM1. Running on a two cpu core machine with two threads,
the algorithm is running close to twice as fast as the sequential algorithm on
most of the graphs. This confirms that the parallel potential of the push relabel
algorithm is high, and that the implementation in this thesis is efficient. By
increasing the number of threads from two to four a small performance increase
is detected on some graphs, despite that SYSTEM1 only is equipped with 2
cpu cores. This is mainly due to the fact the the two cores are utilized more
effectively by using more threads than cores. The reason for this is that each
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Figure 5.6: Push Relabel test result on SYSTEM2

tread often waits on I/O operations and during waiting periods the thread does
not use any computational power.

While SYSTEM1 performed as expected a more unexpected result of the test is
that the parallelized algorithm was actually slower on many graph types than
the sequential algorithm on SYSTEM2. This performance decrease requires a
more extensive explanation and is addressed in Section 5.4.4.

A second interesting result from the test is that both the sequential and the
parallel implementation of the push relabel algorithm is significantly less efficient
than the reference Edmonds-Karp algorithm, on almost every graph type. Only
the AK graph is performing better on the push relabel algorithm. Even tough
the worst case running time of push relabel is better than the worst case running
time of Edmond Karp, the practical performance is much worse. This, however,
was expected and is on par with the findings of A.V. Goldberg and R.E. Tarjan
in [10].

5.4.2 Results of the push relabel algorithm with global
heuristics

The test for the most efficient load balance strategy in Section 5.4.1 also applies
for the push relabel algorithm with global heuristics, and the test for an optimal
load balancing strategy has therefore not been repeated. The algorithm has
been tested against a sequential version of the same algorithm and a reference
implementation of the Edmons-Karp algorithm. The test results can be seen in
figure 5.7 and 5.8.

As with the simple push relabel algorithm, this parallelized algorithm with
global heuristics outperforms the sequential implementation on SYSTEM1. The
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Figure 5.7: Push Relabel with heuristics test result on SYSTEM1

Figure 5.8: Push Relabel with heuristics test result on SYSTEM2
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algorithm running on two cpu cores is not twice as fast as the sequential imple-
mentation but it is still significantly faster. The reason why the performance
increase is not as good as the optimal result, is probably because the heuris-
tics function has not been parallelized. We decided to let one thread do the
global relabeling continuously but we could probably have gotten better results
by using the method discussed by R. Anderson and J.C. Setubal in [2]. This
would, however, have required a much more elaborate synchronization scheme
and would have complicated the implementation a lot.

As it was the case with the simple push relabel algorithm the parallelized version
did not perform very well on SYSTEM2. This is addressed more thoroughly in
Section 5.4.4.

5.4.3 Recapitulation of the results of the implemented al-
gorithms

All graphs has been tested with all developed algorithms and a table showing
all running times can be found on the attached CD (See appendix C). The table
shows the running time for each algorithm on a single graph of each graph type.

It was the conclusion of B.V. Cherkassky and A.V. Goldberg in [4] that the
push relabel algorithm with global relabeling outperforms all known maximum
flow algorithms and this is on par with the results in this thesis. As seen in
figure 5.7, even the sequential implementation of the algorithm is performing
very well and with the performance increase gained from the parallelization it
is even faster.

It is also clear from the results, that the parallelization potential of the push
relabel algorithm is high, even with a standard object oriented programming
language. The ”standard” programming language of almost all previous re-
search has been C or C++, and it was therefore one of the greatest concerns
in this thesis, that the widely accepted parallelization procedure (as specified
in [11, chapter 3] would not apply to a modern object oriented language. This,
however, has too some extend been proven wrong with the work performed dur-
ing this thesis, as the results are close to the results achieved in previous studies
(e.g. [2]). Due to the problems experienced testing the algorithms on SYSTEM2
(see Section 5.4.4), more extensive testing should be done on multi-core systems
with more than two cores to ensure that the results are correct and conclusive.
The performance problems on SYSTEM2 also leads to the conclusion that par-
allelization with the widely accepted parallelization procedure still is very error
prone, and it is hard to make a general parallelization strategy. One still has
to take the underlying architecture into account when parallelizing, even with
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a modern object oriented language like Java.

5.4.4 Advantages and disadvantages of using Java

This section discusses why Java was selected as the programming language as
well the good and not so good experiences gathered throughout the work of this
thesis.

5.4.4.1 Advantages

One of the major goals of this thesis, has been to explore if a modern object
oriented programming language is suited for parallelizing classical algorithms.
Java was selected due to its recent updates with regards to its concurrency
libraries, and because it is a widely used object oriented language. Microsoft’s
C# was considered as well, but no multi-core system with more than two cores
capable of running C# was available to us during the thesis work.

The actual implementation of the algorithms using Java was to some extend
rather painless, as Java provides all of the well known synchronization prim-
itives out-of-the-box. The object oriented aspect of Java also eased the im-
plementation, as it was easy to share functionality between algorithms using
inheritance.

One of the major concerns in the beginning of the thesis work, was that the
selected decomposition into sub tasks, might be too fine-grained for Java. The
performance of the synchronization primitives in Java was unknown, and it was
not known if the many synchronization operations in the algorithms would affect
the performance. This has partly been disproved by the results from SYSTEM1,
which shows that synchronization primitives provided by Java, are very efficient
and does not affect the performance. The reason why the word partly is used is
that the synchronization operations seems to affect the performance in different
ways on different operating systems as described in Section 5.4.4.2.

With the recent updates of Java (1.5 and 1.6), several new data-structures have
been implemented to compete with the classical synchronization mechanisms.
One of them, the ConcurrentLinkedQueue has been tested in this thesis and
it provided some promising results. Even though it was not as effective as fine-
grained synchronization using locks, it was very easy to implement, and thereby
minimizes the number of typical errors experienced when trying to parallelize.
Another promising data structure in Java is the Atomic variables found in the
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package java.util.concurrent.atomic. These variables can be incremented
and decremented atomically, and could potentially be very useful when writing
concurrent programs, as they minimize the need for synchronizing access to
critical regions.

5.4.4.2 Disadvantages

Java has in the recent versions improved the parallel performance a lot, by uti-
lizing the native synchronization mechanisms in the operation system on which
they are executing. This, however, proved to be a major problem when testing
the algorithms developed in this thesis. While the algorithms performed well on
Windows systems (SYSTEM1), they were actually slower than the sequential
algorithms on both Mac OS X and Solaris 10.

This performance decrease lead to much confusion during the development, as
the first thought was that the algorithms was inefficiently implemented. After
trying the different synchronization mechanisms available, it was discovered that
the test setup on the different systems was not identical. The Java version
was actually different on the systems as SYSTEM1 was using Java version 1.6
and SYSTEM2 as well as an Apple laptop were using version 1.5. One of
the major differences between the two versions is in fact the performance of the
synchronization primitives, and this could explain why the algorithms performed
so differently on the two systems.

The next obvious step was to use Java version 1.6 on all systems, and this
resulted in a significant performance boost on the Apple laptop but not on
SYSTEM2. The reason for this is at this time still unknown, but one possible
explanation could be that the Java virtual machine for Solaris implements the
different synchronization mechanisms in an inefficient way. This, however, seems
unlikely as Solaris is developed by the same company as Java (SUN), and one
would think that they would know how to implement efficiently on their own
operating system. Due to time constraints it has not been possible to further
investigate this problem, but if one would try to find a solution, it should be
noted that by using the TPTP framework in eclipse, it has been shown that
the threads does not spend very much time waiting for other threads to release
locks on a shared resource, and it is therefore more likely, that the performance
problem is related to the actual acquire and release operations in the Solaris
operating system.

Another plausible reason why the algorithms did not perform well on SYS-
TEMS2, could be related to the fact that the Java garbage collector requires
special configuration on systems with many cores (10+). We have tried to per-
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form some of the configurations mentioned in [14] but mainly because of the
limited time available a working solution to the problem has not been found.
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Conclusion

The objective of this thesis was to analyze, design and implement a parallelized
version of a classical sequential algorithm suited for use on a standard multi-
core computer. The algorithm selected as the parallelization subject has the
Push Relabel algorithm. This algorithm is one of the most effective Maximum
Flow algorithms available and has in previous studies provided some promising
parallelization results.

The Push Relabel algorithm has in this thesis been thoroughly analyzed us-
ing the widely accepted parallelizing procedure described in [11], and a paral-
lelized design has been proposed. The proposed design has been implemented
in different versions with and without heuristics, all using the object oriented
programming language Java. The thesis describes this development process in
details, and comments on the experiences gathered using Java as the tool for
parallelization.

To test the correctness of the developed algorithms, reference implementations
of the sequential Push Relabel algorithm and the Edmonds Karp algorithm has
been implemented. All Maximum Flows calculated by the developed algorithms
has been compared to the results of the reference implementations, and at the
time of publication no errors related to the calculated results have been found.

The performance of the developed algorithms has been measured using several
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different graph types on two different test setups. The results gathered from the
standard dual-core test setup were promising, and the parallelized algorithms
were running almost twice as fast as the sequential algorithms using two threads.
This is close to the optimal, and shows that the parallelization potential of the
Push Relabel algorithm is good. The results gathered from the second test setup,
which consisted of a server with many cores (50+), was less promising, and the
parallelized algorithms often performed worse than the sequential algorithms.
A possible explanation for this performance decrease has been given in Section
5.4.4.

Common for all test results is that the general Push Relabel algorithm is not
performing well compared to the Edmond Karp algorithm, despite a better
theoretical running time. With heuristics, however, the algorithm is much faster
and outperforms the Edmond Karp algorithm on most graph types. This is on
par with earlier studies.

The thesis leaves room for future work, and especially the performance problems
on multi-core systems with more than a few CPU cores, could be an interesting
field of study. Another interesting extension to this thesis, would be to use a
tool like the SPIN verifier to prove the different concurrent properties of the
developed algorithm.

As a conclusive remark, we believe that the requirements of this thesis has
have fully achieved. The experiences gathered with regards to parallelization
procedures and parallelization using object oriented languages, provides some
interesting results and a good foundation for future work.
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Graphs

All graphs used for testing in this thesis is listed below. The actual graphs can
be found on the included CD in the folder graphs.

Figure A.1: AK graphs
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Figure A.2: GridL graphs

Figure A.3: GridW graphs

Figure A.4: RowD graphs

Figure A.5: RowS graphs
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GUI

To make it easier for testing and running the different algorithms, a Graphical
User Interface (GUI) has been developed. This section will figure as a user
manual for the GUI and explain the different areas of it.

B.1 Starting the GUI

The program can be found on the attached CD in the folder GUI. The program
has been compiled into a .jar file using the 1.6.0 version of Java and this version
is required for execution. The GUI can be launched by double-clicking on the
jar file with the filename maxflow.jar. If this isn’t possible the program can be
launched by running the following command java -jar maxflow.jar provided
that you have navigated to the correct folder.

If you intend to test the program on very large graphs the following com-
mand should be used to launch the program: java -XX:+AggressiveHeap -jar
maxflow.jar. This command allocates as much memory to the program as pos-
sible which is often possible with large graphs.

It should be noted that the GUI has been optimized for use on Windows systems
and is meant as a simple testing tool.
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B.2 Navigating the menu

The GUI consists of three parts: Benchmark, Run algorithms and Graph Gen-
eration. The user can switch between these parts by using the menu tabs on
top.

Figure B.1: The menu tabs of the GUI

B.3 Generating Graphs

In the GUI it is possible to generate graphs. The menu tab Graph Generation
contains this. An example of the Graph Generation area can be seen in Figure
B.2.

Figure B.2: Example of Graph Generation

To select what type of graph to generate, the drop-down menu Graph Type
should be used. The panel to the right will look different with respect to which
graph is chosen because they all have different properties. All fields must be
filled out to be able to generate the graph.

Then, a location for the file containing the graph must be selected. This is done
by pressing the Browse button and navigate to the desired location and write
the filename. Any file-extension can be used.
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When all fields are filled out correctly, the graph is ready to be generated which
is done by pushing the Generate Graph button. A status message will appear
and tell if the creation failed or succeeded.

B.4 Running algorithms

For a simple run of an algorithm this section should be used. By clicking the
Run Algorithm menu tab, this section of the GUI will appear. An example of
how the GUI looks, see figure B.3.

Figure B.3: Example of ”Run algorithm” area after algorithm is done computing.

The desired algorithm should be chosen in the drop-down box to the left - if a
sequential algorithm is chosen, the Number of threads text field will be disabled
but with a parallel algorithm the user can specify how many threads should be
created within the algorithm.

The desired graph is chosen by clicking the Browse-button and navigation to
the file of wish. To run the algorithm on the desired graph, the Run algorithm-
button should be clicked. Then some text will appear in the Statistics-window
with information about the execution.

B.5 Benchmark testing

This area of the GUI allows the user to test multiple algorithms on multiple
graphs many number of times with just one click and allow the user to compare
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the running times and results of the different algorithms.

Figure B.4: Example of the ”Benchmark” area.

An example of the Benchmark area can be seen in figure B.4. A benchmark
consists of multiple jobs and a job is an algorithm type, a graph and a desired
number of executions. A job is created the exact same way as described in
Section B.4 and when all the fields are filled out, the Add job to Queue-button
is clicked and the job will figure on the job-list at the button.

When all desired jobs are added to the queue, the Run-button in the bottom
middle can be pushed and the benchmark testing starts. The program will be
frozen until all iterations of all algorithms are done - if large graph are generated
this can take a while.
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Source Code

The source code of the developed algorithms as well as an electronic copy of the
thesis can be found on the attached CD.

The content of the CD can also be acquired by contacting one of the authors
by email (s052425@student.dtu.dk, s052905@student.dtu.dk) or by downloading
it from http://www.student.dtu.dk/~s052425/bachelor.zip. The content of the
CD is as follows:

Eclipse/ Folder containing the full source code as an eclipse project. Could be
imported directly into eclipse by clicking on ”File → Import → Existing
Projects into Workspace”.

Graphs/ Folder containing all the test graphs used in the thesis.

GUI/maxflow.jar The application as an executable jar-file.

Results/results.xls Microsoft Excel file containing all test results gathered
throughout the thesis work.

Source/ Folder containing the full source code of the application. Ordered into
folders which represents the package structure mentioned in Section 4.2.

Thesis/bachelor.pdf An electronic copy of the final thesis.
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Appendix D

Statistics Framework

To make it easier to to measure the performance of the different algorithms,
a statistical tool has been designed and implemented. The design and imple-
mentation will not be described in details but the main class and the important
methods will be mentioned.

Figure D.1: Important methods of the Statistics-class

On Figure D.1 the main class and its important methods are shown. The statis-
tics tool makes it possible to measure the performance of different areas of the
algorithm and make sub-measurements to existing measurements alltogether.
The framework is very easy to integrate in any algorithm. Besides performance-
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measuremtent it can containt multiple counters so the output can tell how time
the algorithm did a certain operation etc. Each method will be described here:

startStatistics() This method will tell the statistics that the recordings should
start.

beginTimeMark(string) Sets a mark that a new measurement should be
started. The string in the argument will be the title of the measurement.

endTimeMark(string) Stops the measurement with the title equal to the
argument.

createCounter(string) Creates a counter where the title of the counter will
be the string in the argument. The default start value of the counter is zero.

setCounter(string,int) Sets a counter to a value. Overwrites the current
value.

incrementCounter(string) Increment the counter with the title given in the
argument by one.

int getTotalTime() This returns the total time the statistics-method has
been measurering.

toString() Returns a nice output of the totalt statistics including the coun-
ters.

An example of an output after using the tool looks like this:

***** Statistics for Example of Flow-Statistics!*******
---------- Time Stamps ----------
0ms Begin: ’Example of Flow-Statistics!’
15ms - Begin: ’Initialisering’
15ms - Done: ’Initialisering’ (0ms)
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46ms - Begin: ’Breadth First’
250ms - - Begin: ’Create Threads’
468ms - - Done: ’Breadth First’ (422ms)
703ms - Done: ’Create Threads’ (453ms)
781ms Done: ’Example of Flow-Statistics!’ (781ms)
-------------------------------------
---------- Start: Variable Counters ----------
Number of push-operations: 200
Number of relabels: 300
---------- End: Variable Counters ----------
**********************************************

The use of indent text makes it easy to see if two measurements are running at
the same time and makes it easy to see if the measurements finishes in the same
order as they are started.
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